
Distributed Computing on
PostgreSQL

Marco Slot <marco@citusdata.com>

Small data architecture

Big data architecture

Records

Data warehouse

Real-time analytics

Big data architecture using postgres

Messaging

PostgreSQL is a perfect building block
for distributed systems

Features!
PostgreSQL contains many useful features for building a distributed system:

● Well-defined protocol, libpq
● Crash safety
● Concurrent execution
● Transactions
● Access controls
● 2PC
● Replication
● Custom functions
● …

Extensions!
Built-in / contrib:

● postgres_fdw
● dblink RPC!
● plpgsql

Third-party open source:

● pglogical
● pg_cron
● citus

Extensions!
Built-in / contrib:

● postgres_fdw
● dblink RPC!
● plpgsql

Third-party open source:

● pglogical
● pg_cron
● citus

Yours!

dblink
Run queries on remote postgres server

SELECT dblink_connect(node_id,

 format('host=%s port=%s dbname=postgres', node_name, node_port))

FROM nodes;

SELECT dblink_send_query(node_id, $$SELECT pg_database_size('postgres')$$)

FROM nodes;

SELECT sum(size::bigint)

FROM nodes, dblink_get_result(nodes.node_id) AS r(size text);

SELECT dblink_disconnect(node_id)

FROM nodes;

RPC using dblink
For every postgres function, we can create a client-side stub using dblink.

CREATE FUNCTION func(input text)

 ...

CREATE FUNCTION remote_func(host text, port int, input text) RETURNS text

LANGUAGE sql AS $function$

 SELECT res FROM dblink(

 format('host=%s port=%s', host, port),

 format('SELECT * FROM func(%L)', input))

 AS res(output text);

$function$;

PL/pgSQL
Procedural language for Postgres:

CREATE FUNCTION distributed_database_size(dbname text)

RETURNS bigint LANGUAGE plpgsql AS $function$

DECLARE

 total_size bigint;

BEGIN

 PERFORM dblink_send_query(node_id, format('SELECT pg_database_size(%L)', dbname)

 FROM nodes;

 SELECT sum(size::bigint) INTO total_size

 FROM nodes, dblink_get_result(nodes.node_id) AS r(size text);

 RETURN total_size

END;

$function$;

Distributed system in progress...
With these extensions, we can already create a simple distributed computing
system.

Nodes

Nodes Nodes Nodes

Parallel operation using dblink

SELECT
transform_data()

Data 1 Data 2 Data 3

postgres_fdw?

pglogical / logical replication
Asynchronously replicate changes to another database.

Nodes

Nodes Nodes Nodes

pg_paxos
Consistently replicate changes between databases.

Nodes

Nodes

Nodes

pg_cron
Cron-based job scheduler for postgres:

CREATE EXTENSION pg_cron;

SELECT cron.schedule('* * * * */10', 'SELECT transform_data()');

Internally uses libpq, meaning it can also schedule jobs on other nodes.

pg_cron provides a way for nodes to act autonomously

Citus
Transparently shards tables across multiple nodes

Coordinator

E1 E4 E2 E5 E2 E5

Events create_distributed_table('events',
 'event_id');

Citus MX
Nodes can have the distributed tables too

Coordinator

E1 E4 E2 E5 E2 E5

Events

Events Events Events

How to build a distributed system
using only PostgreSQL & extensions?

Building a streaming publish-subscribe system
Producers

Postgres nodes

Consumers

topic: adclick

Storage nodes

E1 E4 E2 E5 E2 E5

Events Events Events

Coordinator

Events
CREATE TABLE

Use Citus to create a distributed table

Distributed Table Creation
$ psql -h coordinator

CREATE TABLE events (

 event_id bigserial,

 ingest_time timestamptz default now(),

 topic_name text not null,

 payload jsonb

);

SELECT create_distributed_table('events', 'event_id');

$ psql -h any-node

INSERT INTO events (topic_name, payload) VALUES ('adclick','{...}');

Sharding strategy
Shard is chosen by hashing the value in the partition column.

Application-defined:

● stream_id text not null

Optimise data distribution:

● event_id bigserial

Optimise ingest capacity and availability:

● sid int default pick_local_value()

Producers connect to a random node and perform COPY or INSERT into events

Producers

E1 E4 E2 E5 E2 E5

Events Events Events

COPY / INSERT

Consumers in a group together consume events at least / exactly once.

Consumers

E1 E4 E2 E5 E2 E5

topic: adclick%

Consumer
group

Consumers obtain leases for consuming a shard.

Lease are kept in a separate table on each node:

CREATE TABLE leases (

 consumer_group text not null,

 shard_id bigint not null,

 owner text,

 new_owner text,

 last_heartbeat timestamptz,

 PRIMARY KEY (consumer_group, shard_id)

);

Consumer leases

Consumers obtain leases for consuming a shard.

 SELECT * FROM claim_lease('click-analytics', 'node-2', 102008);

Under the covers: Insert a new lease or set new_owner to steal lease.

 CREATE FUNCTION claim_lease(group_name text, node_name text, shard_id int)

 …

 INSERT INTO leases (consumer_group, shard_id, owner, last_heartbeat)

 VALUES (group_name, shard, node_name, now())

 ON CONFLICT (consumer_group, shard_id) DO UPDATE

 SET new_owner = node_name

 WHERE leases.new_owner IS NULL;

Consumer leases

Distributing leases across consumers
Distributed algorithm for distributing leases across nodes

 SELECT * FROM obtain_leases('click-analytics', 'node-2')

 -- gets all available lease tables

 -- claim all unclaimed shards

 -- claim random shards until #claims >= #shards/#consumers

Not perfect, but ensures all shards are consumed with load balancing (unless C>S)

Consumers

E1 E4 E2 E5 E2 E5

leases

First consumer consumes all

obtain_leases

leases leases

Consumers

E1 E4 E2 E5 E2 E5

First consumer consumes all

leases leases leases

Consumers

E1 E4 E2 E5 E2 E5

Second consumer steals leases from first consumer

obtain_leases

leases leases leases

Consumers

E1 E4 E2 E5 E2 E5

Second consumer steals leases from first consumer

Consuming events
Consumer wants to receive all events once.

Several options:

● SQL level
● Logical decoding utility functions
● Use a replication connection
● PG10 logical replication / pglogical

Consuming events
Get a batch of events from a shard:

 SELECT * FROM poll_events('click-analytics', 'node-2', 102008, 'adclick',
 '<last-processed-event-id>');

 -- Check if node has the lease

 Set owner = new_owner if new_owner is set

 -- Get all pending events (pg_logical_slot_peek_changes)

 -- Progress the replication slot (pg_logical_slot_get_changes)

 -- Return remaining events if still owner

Consumer loop

E1 E4 E2 E5 E2 E5

1. Call poll_events for each leased shard
2. Process events from each batch
3. Repeat with event IDs of last event in each batch

poll_events

Failure handling
Producer / consumer fails to connect to storage node:
 → Connect to different node

Storage node fails:
 → Use pick_local_value() for partition column, failover to hot standby

Consumer fails to consume batch
 → Events are repeated until confirmed

Consumer fails and does not come back
 → Consumers periodically call obtain_leases
 → Old leases expire

Use pg_cron to periodically expire leases on coordinator:

SELECT cron.schedule('* * * * *', 'SELECT expire_leases()');

CREATE FUNCTION expire_leases()

...

 UPDATE leases

 SET owner = new_owner, last_heartbeat = now()

 WHERE last_heartbeat < now() - interval '2 minutes'

Maintenance: Lease expiration

Use pg_cron to periodically expire leases on coordinator:

$ psql -h coordinator

SELECT cron.schedule('* * * * *', 'SELECT expire_events()');

CREATE FUNCTION expire_events()

...

 DELETE FROM events

 WHERE ingest_time < now() - interval '1 day';

Maintenance: Delete old events

Prototyped a functional, highly available publish-subscribe systems in

https://goo.gl/R1suAo

~300 lines of code

https://goo.gl/R1suAo

Demo

Records

Data warehouse

Real-time analytics

Big data architecture using postgres

Messaging

Questions?
marco@citusdata.com

