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PostgreSQL is a perfect building block 
for distributed systems



Features!
PostgreSQL contains many useful features for building a distributed system:

● Well-defined protocol, libpq
● Crash safety
● Concurrent execution
● Transactions
● Access controls
● 2PC
● Replication
● Custom functions
● … 



Extensions!
Built-in / contrib:

● postgres_fdw 
● dblink RPC!
● plpgsql

Third-party open source:

● pglogical
● pg_cron
● citus



Extensions!
Built-in / contrib:

● postgres_fdw 
● dblink RPC!
● plpgsql

Third-party open source:

● pglogical
● pg_cron
● citus

Yours!



dblink
Run queries on remote postgres server

SELECT dblink_connect(node_id,

    format('host=%s port=%s dbname=postgres', node_name, node_port))

FROM nodes;

SELECT dblink_send_query(node_id, $$SELECT pg_database_size('postgres')$$)

FROM nodes;

SELECT sum(size::bigint)

FROM nodes, dblink_get_result(nodes.node_id) AS r(size text);

SELECT dblink_disconnect(node_id)

FROM nodes;



RPC using dblink
For every postgres function, we can create a client-side stub using dblink.

CREATE FUNCTION func(input text)

  ...

CREATE FUNCTION remote_func(host text, port int, input text) RETURNS text 

LANGUAGE sql AS $function$

  SELECT res FROM dblink(

    format('host=%s port=%s', host, port),

    format('SELECT * FROM func(%L)', input))

  AS res(output text);

$function$;



PL/pgSQL
Procedural language for Postgres: 

CREATE FUNCTION distributed_database_size(dbname text)

RETURNS bigint LANGUAGE plpgsql AS $function$

DECLARE

  total_size bigint;

BEGIN 

  PERFORM dblink_send_query(node_id, format('SELECT pg_database_size(%L)', dbname)

  FROM nodes;

  SELECT sum(size::bigint) INTO total_size

  FROM nodes, dblink_get_result(nodes.node_id) AS r(size text);

  RETURN total_size

END; 

$function$;



Distributed system in progress...
With these extensions, we can already create a simple distributed computing 
system.

Nodes

Nodes Nodes Nodes

Parallel operation using dblink

SELECT 
transform_data()

Data 1 Data 2 Data 3

postgres_fdw?



pglogical / logical replication
Asynchronously replicate changes to another database.

Nodes

Nodes Nodes Nodes



pg_paxos
Consistently replicate changes between databases.

Nodes

Nodes

Nodes



pg_cron
Cron-based job scheduler for postgres:

CREATE EXTENSION pg_cron;

SELECT cron.schedule('* * * * */10', 'SELECT transform_data()');

Internally uses libpq, meaning it can also schedule jobs on other nodes.

pg_cron provides a way for nodes to act autonomously



Citus
Transparently shards tables across multiple nodes

Coordinator

E1 E4 E2 E5 E2 E5

Events create_distributed_table('events',
                         'event_id');



Citus MX 
Nodes can have the distributed tables too

Coordinator

E1 E4 E2 E5 E2 E5

Events

Events Events Events



How to build a distributed system
using only PostgreSQL & extensions?



Building a streaming publish-subscribe system
Producers

Postgres nodes

Consumers

topic: adclick



Storage nodes

E1 E4 E2 E5 E2 E5

Events Events Events

Coordinator

Events
CREATE TABLE

Use Citus to create a distributed table



Distributed Table Creation
$ psql -h coordinator

CREATE TABLE events (

  event_id bigserial,

  ingest_time timestamptz default now(),

  topic_name text not null,

  payload jsonb

);

SELECT create_distributed_table('events', 'event_id');

$ psql -h any-node

INSERT INTO events (topic_name, payload) VALUES ('adclick','{...}');



Sharding strategy
Shard is chosen by hashing the value in the partition column. 

Application-defined:

● stream_id text not null

Optimise data distribution:

● event_id bigserial

Optimise ingest capacity and availability:

● sid int default pick_local_value()



Producers connect to a random node and perform COPY or INSERT into events

Producers

E1 E4 E2 E5 E2 E5

Events Events Events

COPY / INSERT



Consumers in a group together consume events at least / exactly once. 

Consumers

E1 E4 E2 E5 E2 E5

topic: adclick%

Consumer 
group



Consumers obtain leases for consuming a shard.

Lease are kept in a separate table on each node:

CREATE TABLE leases (

  consumer_group text not null,

  shard_id bigint not null,

  owner text,

  new_owner text,

  last_heartbeat timestamptz,

  PRIMARY KEY (consumer_group, shard_id)

);

Consumer leases



Consumers obtain leases for consuming a shard.

  SELECT * FROM claim_lease('click-analytics', 'node-2', 102008);

Under the covers: Insert a new lease or set new_owner to steal lease.

  CREATE FUNCTION claim_lease(group_name text, node_name text, shard_id int) 

    … 

    INSERT INTO leases (consumer_group, shard_id, owner, last_heartbeat)

    VALUES (group_name, shard, node_name, now())

    ON CONFLICT (consumer_group, shard_id) DO UPDATE

    SET new_owner = node_name

    WHERE leases.new_owner IS NULL;

Consumer leases



Distributing leases across consumers
Distributed algorithm for distributing leases across nodes

  SELECT * FROM obtain_leases('click-analytics', 'node-2')

  

   -- gets all available lease tables

   -- claim all unclaimed shards

   -- claim random shards until #claims >= #shards/#consumers

Not perfect, but ensures all shards are consumed with load balancing (unless C>S)



Consumers

E1 E4 E2 E5 E2 E5

leases

First consumer consumes all

obtain_leases

leases leases
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Consumers

E1 E4 E2 E5 E2 E5

Second consumer steals leases from first consumer

obtain_leases

leases leases leases



Consumers

E1 E4 E2 E5 E2 E5

Second consumer steals leases from first consumer



Consuming events
Consumer wants to receive all events once.

Several options:

● SQL level
● Logical decoding utility functions
● Use a replication connection 
● PG10 logical replication / pglogical



Consuming events
Get a batch of events from a shard:

  SELECT * FROM poll_events('click-analytics', 'node-2', 102008, 'adclick',
                            '<last-processed-event-id>');

   -- Check if node has the lease

      Set owner = new_owner if new_owner is set

   -- Get all pending events (pg_logical_slot_peek_changes) 

   -- Progress the replication slot (pg_logical_slot_get_changes)

   -- Return remaining events if still owner



Consumer loop

E1 E4 E2 E5 E2 E5

1. Call poll_events for each leased shard
2. Process events from each batch
3. Repeat with event IDs of last event in each batch

poll_events



Failure handling
Producer / consumer fails to connect to storage node:
 → Connect to different node

Storage node fails:
 → Use pick_local_value() for partition column, failover to hot standby

Consumer fails to consume batch
 → Events are repeated until confirmed

Consumer fails and does not come back
 → Consumers periodically call obtain_leases
 → Old leases expire



Use pg_cron to periodically expire leases on coordinator:

SELECT cron.schedule('* * * * *', 'SELECT expire_leases()');

CREATE FUNCTION expire_leases()

...

  UPDATE leases

  SET owner = new_owner, last_heartbeat = now()

  WHERE last_heartbeat < now() - interval '2 minutes'

Maintenance: Lease expiration



Use pg_cron to periodically expire leases on coordinator:

$ psql -h coordinator

SELECT cron.schedule('* * * * *', 'SELECT expire_events()');

CREATE FUNCTION expire_events()

...

  DELETE FROM events

  WHERE ingest_time < now() - interval '1 day';

Maintenance: Delete old events



Prototyped a functional, highly available publish-subscribe systems in

https://goo.gl/R1suAo  

~300 lines of code

https://goo.gl/R1suAo


Demo
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marco@citusdata.com


